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Ab initio calculations of NO 2 and NO2, using a Dunning [4s3p] basis aug- 
mented by 1 component diffuse s and p functions were carried out. The SCF 
energies of NO 2 and NO 2 (ground states) as a function of 0 s, Op, Ns, and 
Np diffuse function exponents are given and discussed. The curves show some 
unexpected features which make the optimization of the diffuse function 
exponents problematic. 

The SCF vertical electron detachment energy for NO 2 as a function of the 
diffuse 0 s, Op, N s, and Np exponents is then discussed. Except for the case of 
Op, the detachment energy is essentially independent of the 0~, Ns, and Np 
exponents. Finally, results of SCF and MCSCF/CI calculations of the electron 
affinity of NO 2 are given and compared with experiment. 
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I. Introduction 

In carrying out ab initio calculations of molecular properties which use Gaussian 
basis sets, the problem arises regarding how to adjust the basis set for the molecular 
species under consideration. A procedure often used is to scale the exponents. That 
is, the exponents of the functions in the basis set are optimized by calculations on 
atoms [1,2] or small molecules [3, 4]. Then they are corrected for the appropriate 
molecular environment by multiplying the exponents of all the basis functions of 
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a given type by a common scaling factor [2-4] which is chosen to optimize the 
computed energy. 

For calculations involving negative ions, it is desirable to add diffuse s and p 
functions to a standard basis set and then the problem of exponent choice arises. 
In this case one method would be to use the optimum exponents as determined 
from the negative atom ions (if available) and scale them to the molecular ion 
environment. If the added diffuse functions are one component s and p functions, 
then the above method is equivalent to a direct exponent optimization of the 
diffuse functions in the molecular ion environment. 

A main purpose of this note is to point out that there can be problems with this 
method of optimization. In particular, SCF calculations were carried out on NO2 
and NO~ using the Dunning [4s3p] contraction [5] of the (9s5p) Huzinaga [ 1] basis 
set augmented by one-component diffuse Gaussian s andp functions on each atom 
center. Attempts at optimization of the exponents of the diffuse s and p functions 
gives, in several cases, meaningless energy minima or no minima at all. Only in the 
case of diffuse oxygen p functions on NO~ is a meaningful minimum obtained. 

The above raises the question whether all the diffuse N and O s andp functions are 
necessary, or a smaller set will suffice. Because of computation time considerations, 
such a question is important if one wishes to add polarization functions to the 
basis set. It is seen that, from the standpoint of energy lowering, all the functions, 
except possibly the N v function, are necessary with Op giving the most lowering, 
followed in order by 03, Ns, and Np. (Os and Op refers to diffuse s andp functions 
on both oxygen atoms.) However, for the vertical N O ;  electron detachment 
energy, which is an energy difference, the Op and either the O3 or the N 3 functions 
are sufficient. This result differs from that of Andersen and Simons [6] who found, 
using a Dunning [4s2p] basis, that augmentation by diffuse in-plane Op functions 
and N s and Np functions were all necessary. 

As a partial check on the appropriateness of the most diffuse components of the 
Huzinaga (9s5p) basis for NO2, the exponents of the most diffuse N 3, Np, 03, and 
Op components were separately reoptimized for NOz, while keeping the [4s3p] 
contraction fixed. The new exponents were all 3~-10~  smaller than the original 
values. Use of these reoptimized exponents in the basis gave an NO~- SCF energy 
lowering of 0.002 hartree over the original SCF [4s3p] value. Since this is 10~ of 
the lowering obtained by augmentation, one concludes that augmentation of the 
[4s3p] basis is necessary and that not much is to be gained by reoptimizing the 
Huzinaga basis. 

Finally, results of MCSCF and MCSCF/CI calculations using the augmented 
[4s3p] basis set, of both the vertical e- detachment energy of NO2 and the NO2 
electron affinity are given. The very good agreement between theory and experi- 
ment for the electron affinity at the SCF level disappears at the MCSCF and 
MCSCF/CI levels. 
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2. Calculation 

All the calculations reported on here use the Dunning [4s3p] contraction of the 
Huzinaga (9s5p) basis. For many of the results, this basis was augmented by 1 
component diffuse s- and p-functions centered on the N and O atoms. Unless 
explicitly stated otherwise, the Np and Op diffuse exponents were taken to be [7] 
0.048 and 0.059, respectively (optimum values for N -  and O-  ions) with the s 
exponents arbitrarily chosen equal to the corresponding atom p exponents. 

The calculations were done either at the NOf  equilibrium geometry [8] dN_ o = 
dN~,=2.3356 bohrs and / O N O ' =  115.4 ~ or at the NO 2 equilibrium geometry 
[-9] dN~o = dN~, = 2.2552 bohrs and / ONO' = 134.1 ~ Most of the calculations 
reported on here are SC'F calculations. For the MCSCF and MCSCF/CI [10] 
calculations the configuration space consisted of all single and double plus 
selected triple and quadruple excitations into the valence space from the HF 
configuration. The NI~, O1~, and O2~ orbitals were held as core orbitals with 
excitations from the N2~ orbital [11] (and all the p orbitals) allowed. The CI 
configuration list contained all single and double excitations from those reference 
configurations with coefficient magnitudes >~0.1 in a CI calculation [-12] t. The 
MCSCF configuration list contained all spin components of those spatial con- 
figurations which had one or more spin components with coefficient magnitudes 
~> 0.03 in the CI calculations. The MCSCF calculations (which gave as output, 
orbitals to be used as input to a CI calculation) and CI calculations were repeated, 
making changes in the MCSCF and CI configuration lists to comply with the 
above acceptance criteria, until the lists were stable. 

3. Results 

Since there is no reason why diffuse function exponents which are optimum for 
negative N and O ions should be optimum for molecules containing N and O, 
calculations were made in which the diffuse N and O s andp exponents were each 
varied one at a time with the remaining 3 diffuse function exponents held at their 
canonical values mentioned before. Figs. 1 and 2 show the results of SCF calcula- 
tions on NO2(X2A1) and NOz(X1A1), all made at the NO2 experimental equi- 
librium ground-state Czv geometry [8] of dN_o=2.3356 bohrs and an ONO 
angle of 115.4 ~ The abcissa shows the exponent variation and the ordinate, the 
energy. The results of variation of the O~ and Op exponents on NO 2 and NO 2 are 
given in Figs. 1 (NO2) and 1 (NO2). The results of variation of the N~ and Np 
exponents for NO2 and NO~ are given in Figs. 2 (NO2) and 2 (NO~), respectively. 
The O~ and Op curves give the results for simultaneous changes in both O atoms 
in NO z and in NO~-. The arrows on the abscissae locate the smallest O~, Op, N s, 
and Np exponents in the [4s3p] Dunning set. The circles and triangles all represent 
the calculated points which are connected by smooth curves. 

1 The Batelle Ohio State CI program of Sharitt and coworkers as adopted by J. Rosenberg was 
used. See Ref. [12]. 
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Fig. 1. SCF energy for the NO 2 
and NO~ ground state at the NO~- 
equilibrium geometry as a function 
of the diffuse O~ and Op function 
exponents. Fig. 1 (NO2) gives the 
energies for NO2 and Fig. 1 (NO2) 
gives the energies for NO; .  For 
each curve the non-varying ex- 
ponents of the diffuse functions 
were fixed at the values of N,=  
Np=0.048, and for the Os curves 
Op=0.059 and for the Op curves 
O s = 0.059. The points marked with 
circles (Op), triangles (Os), squares, 
and solid circles are the actual 
computed SCF values. They are 
connected by the smooth curves. 
The curve marked with squares is 
an Os curve for NO~ but with the 
N~ diffuse exponent set equal to 
0.168 instead of 0.048. The curve 
marked with solid circles is an O s 
curve for NO~- with a two  com- 
ponent diffuse N~ Gaussian with 
N, exponents equal to 0.048 and 
0.168 

The curves show quite a diversity in shape. The N~ and Os curves for both NO2 
and NO2 show a general energy lowering as the s exponent is increased, with the 
exception of a sharp peak which is quite sharp and narrow in the case of the Os 
curves. The Op curve for NO2 and the Np curves for N O  2 and NO2 show a similar 
energy lowering as the p exponent is increased without the presence of a sharp 
peak. The Op curve for NO2 is unique in showing a (relatively) deep minimum 
with no energy lowering as the exponent is increased. 

The intersection of the curves with the ordinate, which correspond to zero values 
of the diffuse Gaussian exponent are the SCF energy values which one gets if one 
removes the corresponding diffuse Gaussian component from the basis set. For 
example, the Os curve for NO~ intersects the ordinate at an energy of - 204.0472 
hartrees. This is also the SCF energy for NOi  with 1 component diffusep functions 
on the N and O atoms and a t component diffuse s function on the N atom only. 
The ordinate intersections for the other curves have corresponding interpretations. 
This clearly follows from the fact that a basis function component with a very 
small exponent is spread over a large region of space and thus has a very small 
overlap with functions which are concentrated around the atom centers. In each 
case the curves descend initially as one moves away from the origin. This shows 
that adding in diffuse N~ or Np or  O~ or O v components with small exponents to 
the basis, even in the presence of the remaining 3 diffuse component function types, 
lowers the SCF energy. 

In seeking for an explanation of the peaks in the N~ and Os curves, it is noted that, 
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as one varies the exponent through the peak regions, the relative sign of the most 
diffuse s function in the [-4s3p] set and the added s function changes for each SCF 
orbital. 

For example, let ~b ~ be the most diffuse s type Gaussian for oxygen in the [4s3p] 
set, and let ~b ~ be the added s type diffuse Gaussian. The SCF calculations give 
each orbital in terms of optimized expansion coefficients for the Gaussian basis. 
Thus a general orbital can be written as -- �9 + c(~)~b ~ + d(c0~b~ + . . .  where the 
coefficients c(c0 and d(~), which can be either positive or negative, have the 
dependence on the added-function Gaussian exponent e made explicit. The dots 
refer to the other components in the expansion. Changing the relative sign of an 
orbital component as one goes from cq to e2 means that one goes from 

�9 ..Ic(~j)]~b~176 to ...ic(c~2)[c~~176 
or from 

�9 . .  1 c ( = , ) 1 4 ,  ~  I d ( ~ ) 1 4 ~ ~  to ..-Ic(c~)lq~~ 1 d ( ~ 2 ) 1 ~ ~  �9 �9 

where [ -  [ denotes the absolute value. The remaining two possibilities are obtained 
by multiplying each of the above by - 1. 

Now suppose for some orbital the first possibility given above represents the 
change. This means that d(~l) is positive and d(~zz) is negative. By the argument of 
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continuity (the coefficients of the components in the orbitals must be continuous 
functions of  the exponents), there must be some exponent value ~' between cq and 
~2 for which d(~')=0. But d(~ ')=0 means that the energy contribution at ~' of  
this orbital is the same as if no diffuse oxygen s components were present at all. 
(Because of  C2v symmetry the magnitudes and relative signs of c(~) and d(c0 must 
be the same on both oxygen atoms.) 

Suppose now that the SCF orbitals were such that the diffuse oxygen s component 
coefficients had a value of zero at the same value of c~' for all orbitals. By the 
previous argument the SCF energy at this value becomes equal to the SCF energy 
computed without any diffuse oxygen s component in the basis set, i.e., the energy 
value at the intersection of the Os curve with the ordinate. It is thus clear that in 
this case a sharp spike should exist at ~' in the Os SCF energy curve with a peak 
value equal to the ordinate intersection value. 

One can, in this case, regard the O~ SCF energy curve as two curves which join 
one another at the spike. For  values of ~ < c( one has an SCF energy curve with 
orbitals each of which has a fixed relative sign between the os o~ (~D and ~b a coefficients. 
That  is, for each SCF orbital the value of c(e)d(e)/[c(e)d(e)[ (either + 1 or - 1) is 
independent of  e for c~ ~< c(. Of course, the value of e(cOd(e)/[e(e)d(cO[ need not be 
the same for each orbital. For  values of c~ ~> c( one has another SCF energy curve 
with relative sign values for each orbital opposite to those of the above curve. 
These two curves join at e = c( where e(c()d(~')/[c(e')d(c~')[ = 0/0. 

The actual situation for the N~ and O~ curves for N O  2 and N O ;  is very close to 
this. Fo r  each of  these 4 cases, the relative signs of the q~s and q~s components 
and the q5 ~ and ~b ~ components respectively for each orbital changes over a very 
small region of exponent variation of -0 .003  to 0.01. Thus, on this basis one 
would predict, from an examination of the SCF orbital changes with the diffuse 
s exponents, the existence of such a spike for each of the 4 cases. 

It is unclear at present why the relative signs of the q~os and q~O, coefficients for all 
the SCF orbitals should change around the same diffuse exponent value and 
similarly for q ~  and ~b2 s. It should be noted that the value of  c( corresponding to 
the peak in the O~ curves is the value (0.048) of the N~ diffuse exponent. Similarly, 
the value o f t (  corresponding to the peak in the Ns curves is the value (0.059) of  the 
O~ diffuse exponents. At these points the diffuse s functions are identical on all 
three atom centers. Thus at these points the diffuse s function parts of the basis 
set have a symmetry which is higher than C2v. 

For  the Np and O v curves there are as many relative sign changes for the 4~;  and 
q52~ orbital components as there are for the s orbital components. However, for 
each SCF orbital these changes occur for different exponent values. Also, within 
each orbital the relative sign changes for the p~, py, and px components of  the 
diffuse function often occur at different diffuse p function exponent values. Thus 
the Np and O v curves would not be expected to have the narrow peaks as do the 
O~ and N~ curves and, in fact, they do not, as inspection of Figs. 1 and 2 shows. 

It should be noted that these sharp peaks in the Ns and Os curves are not real 
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physical effects in that they can be moved around or removed by changing expo- 
nents or functions in the diffuse basis. For example, if one sets the Ns diffuse 
exponent at 0.168 and varies the O s diffuse exponent over the peak region for 
NO~, the peak is essentially gone (curve with squares, Fig. 1). If one adds to the 
complete one-component diffuse component set an extra Ns function with expo- 
nent at 0.168, the peak is mostly gone (curve with solid circles Fig. 1). 

Another general feature of the curves is that, with the exception of the NO~ Op 
curve and the peaks, they all show an energy lowering as the diffuse exponent is 
increased. A study of the SCF orbitals - - - +  c(a)~b~ + d(@b](e). �9 �9 shows that as 
c~ is increased towards fl, the smallest s component exponent in the [4s3p] basis on 
the atom being considered, Ic(c0l and [d(~)[ both become large but c(~)/Ic(~)l = 
-d(~)/ld(c0[. Plots of c(c0~b;+d(~)q~(~) for different orbitals give a variety of 
curves-  some with nodes and some without. This suggests strongly that the 
reason for the SCF energy decrease as ~ increases is due to the increased flexibility 
of the basis set. Ifc~ is comparable to fl then by suitable choice of c(a) and d(a) some 
orbitals can include ns character with n > 2. Other choices can in effect convert 
c(e)(a~ + d(a)~b, into a single component where the effective exponent then can be 
different for different orbitals. It is also clear that for small values of e, c(a)4)o + 
d(cO(~a(a) is effectively just q~D over the important space regions as qS~(~) --, constant 
a s a ~  0. 

The energy lowering in NO2 due to the addition of diffuse functions to the 
[-4s3p] basis, as well as the shape of the curves in Figs. 1 and 2, suggests that the 
smallest exponents of the Dunning [-4s3p] basis set itself may not be optimum for 
NO~. To this end SCF calculations without the diffuse functions in the basis were 
made at the NO 2 equilibrium geometry where the smallest Os, Op, N~, and Np 
exponents in the [4s3p] set were separately varied to find the energy minimum (a 
harmonic variation of the energy in the neighborhood of the minimum was 
assumed). 

Table 1 gives the results. Column 2 gives the value [1] of the smallest exponent for 
each of the four types and column 3 gives the values found here for NO 2 . It is seen 

Table 1. Optimization for NO2 of most diffuse 
part of Dunning [4s3p] basis exponent Type Dunning Optimized 

N s 0.2133 0.1908 
Np 0.1654 0.1601 
Os 0.2846 0.2731 
Op 0.2137 0.2008 
SCF energy 

(hartrees) - 204.02748 - 204.02990 

that optimization of the most diffuse [4s3p] exponents for NO~- decreases their 
values by 0.005 to 0.022. While this suggests a more diffuse [-4s3p] basis may be 
appropriate for NO2, this change is not large considering the fact that N O ;  is a 
negative ion and the exponents in the (9s5p) primitive basis [1] were optimized on 
atoms. This is borne out by noting that the NO 2 SCF energy, calculated with the 
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most diffuse part of the [4s3p] basis reoptimized gives an energy of -204.02991 
hartrees which is only 0.068 eV (0.0025 hartree) below the original [4~3p] value 
(last row of Table 1). Since the augmented [4s3p] SCF energy for NO~ is 
-204.04873, it is clear that adding 1 component diffuse functions to the [4s3p] 
basis is much more important for NO2 than is optimizing the exponents of the 
most diffuse components of the [4s3p] set. Addition of diffuse functions to the 
[4s3p} basis is less important for NOz. SCF calculations for NO2 at its experi- 
mental equilibrium geometry [-9] give [4s3p] and augmented [-4s3p] values of 
-203.95605 and -203.96243 hartrees, respectively. This gives an energy differ- 
ence of 0.0064 hartree which is about 1/3 the corresponding energy difference 
0.0213 hartree for NO2. 

It is clear from Figs. 1 and 2 that attempts to optimize the diffuse component 
exponents by minimizing the SCF energy in either NO2 or NO~ will not work in 
general. Except for Op in NO~, one either gets a false minimum just to the left of 
the peaks in the s curves or no minimum at all in the case of the Np and NO2Op 
curves. This suggests that one should optimize the diffuse exponents by use [6] of 
the vertical e-  detachment energy of NO~ which is the difference between appro- 
priate pairs of curves in Figs. 1 and 2. 

Fig. 3 shows the NO2 vertical e- detachment energy as a function of the diffuse 
exponent for N s, Os, Np, Op obtained from the NO 2 and NO~ results given in 
Figs. 1 and 2. In the case of N~, Np, and O~, the e- detachment energy curves are 
almost flat (for Np the total e-  detachment energy change over the range of 
exponent change is 0.0006 hartrees for Np and even less for O~ and N~. On the 
other hand, the Op curve shows a strong e- detachment energy dependence on 
the Op diffuse exponent. 

One concludes from the curves of Fig. 3 that even in the presence of N s, 05, and 
Np diffuse components in the basis, the Op diffuse component contributes to the e- 
detachment energy. Also, the peak in the N s and Os functions of Figs. 1 and 2 is 
not present - thus whatever is the ultimate cause of the peaks, it has essentially no 
effect on the e- detachment energy. Finally, the independence of the e- detach- 
ment energy for Np, N~, and O~ on the corresponding diffuse exponents, plus the 
fact that all three curves give essentially the same detachment energy at zero 
exponent, means that the effect on the detachment energy by any one of the three 
function types (Np, N~, or Os) is accounted for by the remaining two+Op. For 
example, adding an Ns diffuse function to the [4s3p] + diffuse Op + O~ + Np basis 
set does not affect the e- detachment energy. Similarly, the addition of O s diffuse 
functions [one for each O atom] to the [-4s3p] + diffuse Op + N~ + Np basis set does 
not affect the e- detachment energy. A similar remark holds for Np. 

Note that this does not mean that the N~, 05, and Np diffuse components do not 
contribute to the e-  detachment energy. To see this and to find out which of the 
diffuse function types are necessary, SCF calculations were made with the following 
basis sets : [4s3p] + Op diffuse, [4s3p] + (Op + Np) diffuse, [-4s3p] + (Op + Os) 
diffuse, and [-4s3p]+(O~+Ns) diffuse. Table 2 presents the results. The first 
column gives the basis set and the second the exponents of the diffuse functions. 
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Fig. 3. SCF vertical electron de- 
tachment energy for NO;  as a 
function of the diffuse function 
exponent. The curves marked 02, 
Op, N s, and Np represent the 
difference of the corresponding 
Os, Op, Ns, and Np curves of 
Figs. 1 and 2 
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(The Op value is very close to the optimum value of 0.054, Figs. 1 and 3, and the 
Np, N s, and Os values are the canonical ones.) The third and fourth columns give 
the corresponding NO2 and NO2 SCF energy and the fifth and sixth columns give 
the NO~- vertical e- detachment energy in hartrees and electron volts. 

From Table 2 one sees that addition of one-component s and p diffuse functions 
to the [4s3p] basis drops the vertical e- detachment energy from 2.76 eV to 3.16 eV 
or by 0.40 eV. Addition of a diffuse Op component alone to the [4s3p] basis 
accounts for 0.22 eV or 55% of the 0.4 eV drop. Addition of the Np diffuse function 

Table 2. NO~- SCF vertical e-  detachment energy 

Basis set Diffuse exponents 

Energy + 203.0 e- Detachment 
(hartrees) energy 
NO 2 NO 2 hartrees eV 

[4s3p] . . . .  0.92607 - 1.02748 0.10141 2.76 
[4s3p] + Op Op=0.049 -0.92779 -1.03722 0.10942 2.98 
[4s3p] + Op + Np Op=0.049 Np=0.048 -0.92852 -1.03831 0.10978 2.99 
[4s3p]+Op+N s Op=0.049 Ns=0.048 -0.93074 -1.04625 0.11550 3.14 
[4s3p] +Op+O s Op=0.049 Os=0.059 -0.93156 -1.04694 0.11538 3.14 

[4s3p]+Op+O s Op=0.049 ~ Os=0.059 -0.93249 -1.04879 0.11629 3.16 
+ Np + N~ N s = Np = 0.048 J 
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to the [4s3p] + Op basis has no effect. Addition of either the N~ or the O~ functions 
to the [4s3p] + O v basis account for an additional 41~ of the lowering. Thus, use 
of either the Or+  Os or the Or+  Ns diffuse components with the [4s3p] basis 
accounts for 96~ of the full augmented [4s3p] energy lowering and thus suggests 
that for these purposes the full basis is unnecessary. 

These results differ from those of Andersen and Simons [6] in that they found, 
using a [4s2p] basis that, N~, Np and (in-plane-only) O v diffuse components were 
necessary. With this augmented [4s2p] basis they found a vertical e- detachment 
energy of 2.66 eV instead of 3.16 eV as reported here. These differences probably 
result from the fact that a [4s3p] basis was used here and the NO2 energies were 
calculated from SCF NO2 energies by the EOM method in [6]. 

It is of interest to calculate the NO~-NO 2 energy difference at their respective 
experimental equilibrium geometries. The reason is that this is essentially equal to 
the adiabatic electron affinity of NO2. (Zero point vibrational corrections are 
expected to be small as they are equal to the difference in the zero point vibrational 
energies of NO 2 and NO~- in their respective ground states.) 

There are many determinations of the NO 2 electron affinity in the literature 
[13-15]. Possibly the best values are those given by Hughes et al. [13] (which 
contain a list of some of the other literature values) 2.28 +0.1 eV, Duncan et al. 
[14], 2.38_+0.06 eV, and Herbst et al. [15], 2.36_+0.1 eV. 

SCF calculations using both the [4s3p] basis and the augmented [4s3p] basis with 
Ns and Np exponents equal to 0.048 and O~ and O v exponents equal to 0.059 were 
carried out for both NO~(X1A1) and N O z ( X 2 A 1 )  at their respective equilibrium 
geometries. They gave values of 1.94 eV and 2.35 eV for the respective [4s3p] and 
augmented [4s3p] basis. 

The remarkable agreement between the augmented SCF value and experiment 
must be regarded as fortuitous as SCF calculations neglect correlation effects. 
Andersen and Simons [6], using the EOM method on an SCF potential curve for 
NO2, calculate an electron affinity of 2.25 eV. To further test the importance of 
correlation effects, MCSCF and MCSCF/CI calculations (described in Sect. 2) 
were carried out here on the augmented [4s3p] basis with the previously given 
values of the Ns, Np, Os, and O v diffuse exponents. The final calculations gave 
equilibrium geometry ground state NO2 and NO~- energies of -204.15831 and 
-204.19417 hartrees which gives an NO 2 electron affinity of 0.98 eV. The 
difference between this value and the SCF value of 2.35 eV show the importance 
of molecular correlations to the NO 2 electron affinity. The difference between this 
value and the experimental values suggest the importance of either including d 
functions into the basis set or not neglecting excitations into the virtual space. 
Preliminary calculations suggest that inclusion of d functions will not reduce the 
discrepancy - thus correlation effects resulting from virtual space excitations must 
be the main source of the disagreement. The good agreement between the SCF 
value and experiment suggests that the correlation effects due to excitations into 
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the valence space roughly cancel the remaining effects from excitations into the 
virtual space. However, this will have to await further calculations. 
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